Difference between revisions of "USB-SATA powerswitch"
(→pinout) |
|||
Line 23: | Line 23: | ||
Viewing with the USB connector on the left side, and the power pads on the lower side: |
Viewing with the USB connector on the left side, and the power pads on the lower side: |
||
⚫ | |||
* 12V IN |
* 12V IN |
||
⚫ | |||
* GND |
* GND |
||
* GND |
* GND |
Revision as of 16:28, 21 September 2011
USB SATA powerswitch
This is the documentation page for the USB SATA powerswitch PCB.
overview
The USB SATA powerswitch PCB has an USB connector and connection points for 3 power rails. The brains of the PCB is an at90usb162 (or compatible) chip. The 12V power rail is switched with an IRF9333 FET, and the 5V and 3,3V rails are switched with FDS8884 FETs.
pinout
- led1 is connected to VCC
- led2 is connected to PD6
- led3 is connected to PD5
- led4 is connected to PD4
- led5 is connected to PD3
- led6 is connected to PD0 (12V FET)
- led7 is connected to PD1 (5V FET)
- led8 is connected to PD2 (3,3V FET)
- led9 is connected to 12V in
- led10 is connected to 5V in
- led11 is connected to 3,3V in
Viewing with the USB connector on the left side, and the power pads on the lower side:
- 12V IN
- 12V OUT
- GND
- GND
- 5V IN
- 5V OUT
- GND
- GND
- 3,3V IN
- 3,3V OUT
Mind the reversed order for the 12V pads, compared to the 5V and 3,3V pads!
Default operation
programming
This section describes how you get your program into the processor.
In general what you need to know is that the processor will boot into the code you programmed into it on powerup. Once you're done developing your program, that's the way you'll use it: Powerup, run.
If there is no program loaded or if you press the reset button the chip comes up in "firmware upload mode". This is done by a bootloader. You should take care not to overwrite or erase the bootloader, because there is no way to put the bootloader back once it is gone.
Linux
Get the dfu-programmer for atmel chips package. (link?)
On sufficiently recent Ubunu distributions that is as simple as:
sudo apt-get install dfu-programmer
I recommend creating a script called "dfu":
#!/bin/sh if [ -z "$CHIP" ] ; then chip=at90usb162 else chip=$CHIP fi hex=$1 sudo dfu-programmer $chip erase sudo dfu-programmer $chip flash --suppress-bootloader-mem $hex sudo dfu-programmer $chip start
TODO: figure out how to get rid of the "sudo" commands here...
Now downloading and starting a program is as simple as pressing the reset button and then:
dfu <yourbinary>.hex
TODO: When I'm developing, I'm likely to modify the code, and when I want to program the chip I hit the "reset" button on the board. Then the computer will see my chip re-enumerate as the Atmel DFU chip. A simple script could watchout for that and invoke dfu <mycurrentbinary>.hex the moment the chip has enumerated. Once that's running downloading and starting the latest code becomes as simple as hitting the reset button.
Apparently the FLIP program is now available for Linux too. See below.
windows
Get the "flip" program from Atmel. http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886
writing programs
The chip is an at90usb162. http://www.atmel.com/dyn/resources/prod_documents/doc7707.pdf
You can program the processor as if it is a normal AVR processor without USB. Just like an arduino. Or you can program it to have USB support. For this the LUFA package is very useful. http://www.fourwalledcubicle.com/LUFA.php
Depending on what you want you can start from these examples:
DONE: Find out if we can jump to the bootloader from our code so that we can issue a "go get yourself updated" command over the USB (yes, but the documentation says nothing about what address to jump to). This comes in handy if the reset button is difficult to reach because the device is built-in somewhere. http://www.atmel.com/dyn/resources/prod_documents/doc7618.pdf
future hardware enhancements
- replace the SMD switch with an TH version
future software enhancements
- program the LUFA bootloader.
- Program an even smaller bootloader. (512 bytes should be possible, CF teensy/halfkay).